ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration	TESA ASSA ABLOY
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-ASA-20150166-IBA1-EN
Issue date	10.06.2015
Valid to	09.06.2020

Access control systems – SMARTair Wall Reader TESA ASSA ABLOY

www.bau-umwelt.com / https://epd-online.com

1. General Information

TESA ASSA ABLOY

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-ASA-20150166-IBA1-EN

This Declaration is based on the Product Category Rules:

IBU: PCR Electronic Access Control Systems, 11-2013 (PCR tested and approved by the independent expert committee (SVA))

Issue date 10.06.2015

Valid to 09.06.2020

Nermanes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bayen und Umwelt e.V.)

Mann

Dr.-Ing. Burkhart Lehmann (Managing Director IBU)

2. Product

2.1 Product description

The SMARTair Wall Reader, produced by TESA, an ASSA ABLOY Group brand, is a device that communicates with a personalized credential via RF technology. It collects identity information from the credential and passes it along to a secured control unit. The control unit then grants or denies access to the credential holder. It is capable of communications using a high frequency RF signal and able to communicate with several credential formats. Supported credential formats:

- iCLASS SE (Cards/Tags/Fobs)
- SE for DESFiire EV1 (Cards)
- SE for MIFARE Classic (Cards/Tags/Fobs)
- NFC compatible
- ISO/IEC 15693

2.2 Application

The SMARTair Wall Reader is suitable for indoor and outdoor use, where ID authentication is required. Common applications include: Commercial buildings, Industrial buildings, Government buildings, Military installations, Education establishments, Healthcare

SMARTair Wall Reader

Owner of the Declaration TESA ASSA ABLOY

Bº Ventas, 35 20305 Irun, Gipuzkoa SPAIN

Declared product / Declared unit

This Declaration represents 1 piece of SMARTair Wall Reader.

Scope:

This declaration and its LCA study are relevant to SMARTair Wall Reader

Main primary manufacturing processes are made by external suppliers and the final manufacturing processes and assembly occur at our manufacturing factory in TESA, Spain. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025

(Independent verifier appointed by SVA)

buildings.

2.3 Technical Data

The table presents the technical properties of SMARTair Wall Reader:

Technical data

Name	Value	Unit
Power supply	100-240	V
Current Requirements	1	A
Operating Temperature	-10 to 80	°C
Operating Humidity	up to 85	%
Power consumption (standby)	10	mW
Power consumption NSC - w/IPM	1.4	W
Peak Power Draw (During read)	1.2	W

2.4 Placing on the market / Application rules

EMC Directive 2004/108/CE LV Directive 2006/95/CE R&TTE Directive 1999/05/CE ROHS Directive 2011/65/CE IP 54 Certified

2.5 Delivery status

Each Wall Reader unit is delivered individually packaged with mounting hardware, and gasket. Packing dimensions: 220mm x 300mm x 50mm.

2.6 Base materials / Ancillary materials

The average composition of the SMARTair Wall Reader is as following:

Component	Percentage in mass (%)
Brass	0.31
Plastics	20.24
Steel	56.97
Electronic	11.54
Electro mechanics	10.94
Total	100.0

2.7 Manufacture

The SMARTair Wall Reader is assembled at the production facility at TESA, Irun. The electronics are produced in China and the mechanics in Spain. The components come from processes like stamped steel, turning, zinc and steel casting.

The factory of TESA has a certification of Quality Management system in accordance with /ISO 9001:1994/.

2.8 Environment and health during manufacturing

ASSA ABLOY is committed to producing and distributing door opening solutions with minimal environmental impact, where health & safety is the primary focus for all employees and associates. • Environmental operations, GHG, energy, water, waste, VOC, surface treatment and H&S are being routinely monitored. Inspections, audits, and reviews are conducted periodically to ensure that applicable standards are met and environmental management program effectiveness is evaluated.

• Code of Conduct covers human rights, labor practices and decent work. Management of ASSA ABLOY is aware of their environmental roles and responsibilities, providing appropriate training, supporting accountability and recognizing outstanding performance.

The factory of TESA has certification of

Environmental Management to /ISO 14001:1999/. • Any waste metals during machining are separated and recycled. The waste from the water-based painting process is delivered to waste treatment plant.

2.9 Product processing/Installation

SMARTair Wall Reader is installed by trained product integrators or by the product end user. Installation instructions are included with each unit.

2.10 Packaging

The device is packed in a carton box with foam spacers to avoid damage. Also included in the packaging are paper installation instructions, the gasket, and a plastic bag containing the connectors and mounting hardware. Packaging materials shall be collected separately for recycling.

Material	Value (%)
Cardboard/paper	100
Total	100.0

2.11 Condition of use

No auxiliary or consumable materials are incurred for maintenance and usage of the reader. Repairs or replacement are not usually necessary. No cleaning efforts need to be taken into consideration.

2.12 Environment and health during use

There are no interactions between products, the environment and health.

2.13 Reference service life

15 years depending on cycle frequency.

2.14 Extraordinary effects

Water

Contain no substances that have any impact on water in case of flood. Electric operation of the device will be influenced negative.

Mechanical destruction

No danger to the environment can be anticipated during mechanical destruction.

2.15 Re-use phase

The product is possible to re-use during the reference service life and be moved to one door to another. Waste codes according to European Waste Catalogue /EWC/ and Hazardous Waste List -Valid from 1 January 2002; /EWC/ 16 02 13* discarded equipment containing

Azardous components other than those mentioned in 16 02 09 to 16 02 12 /EWC/ 17 02 03 plastic

/EWC/ 17 04 01 copper, bronze, brass

/EWC/ 17 04 05 iron and steel

/EWC/ 17 04 11 Cables with the exception of those outlined in 17 04 10

Disposal of the product is subject to the /WEEE/ Directive within Europe, Directive 2012/19/EU.

2.16 Disposal

No disposal is foreseen for the product nor for the corresponding packaging.

2.17 Further information

More information on TESA ASSA ABLOY SMARTair Wall Reader is available from:

TESA ASSA ABLOY B^o Ventas, 35 20305 Irun, Gipuzkoa SPAIN Tel: +34 943669100 Internet: www.tesa.es

3. LCA: Calculation rules

3.1 Declared Unit

The declaration refers to the functional unit of 1 piece of SMARTair Wall Reader as specified in Part B requirements on the EPD for Electronic Access Control Systems /IBU PCR Part B/.

Declared unit

Name	Value	Unit
Declared unit	1	piece of SMARTair Wall Reader
Mass of product (without packaging)	0.621	kg
Conversion factor to 1 kg	1.61	-

3.2 System boundary

Type of the EPD: cradle to gate - with options. The following life cycle phases were considered for Reader:

A1-A3 Production stage:

- A1 Raw material extraction and processing
- A2 Transport to the manufacturer and
- A3 Manufacturing

Construction stage:

- A4 Transport from the gate to the site
- A5 Packaging waste processing

Use stage related to the operation of the building includes:

B6 – Operational energy use (Energy consumption for lock operation)

End-of-life stage:

- C2 Transport to waste processing,
- C3 Waste processing for recycling and
- C4 Disposal (landfill)

These information modules include provision and transport of all materials, products, as well as energy and water provisions, waste processing up to the endof-waste state or disposal of final residues.

Module D:

 Declaration of all benefits or recycling potential from EoL and A5.

3.3 Estimates and assumptions

Use phase:

For the use phase, it is assumed that the lock is used in the European Union, thus an European electricity grid mix is considered within this stage.

EoL:

In the End-of-Life phase, for all the material which can be recycled, a recycling scenario with 100% collection rate was assumed.

3.4 Cut-off criteria

In the assessment, all available data from the production process are considered, i.e. all raw materials used, auxiliary materials (e.g. lubricants), thermal energy consumption and electric power consumption - including material and energy flows contributing less than 1% of mass or energy (if available). In case a specific flow contributing less than 1% in mass or energy is not available, worst case assumption proxies are selected to represent the respective environmental impacts.

Impacts relating to the production of machines and facilities required during production are out of the scope of this assessment.

3.5 Background data

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used /GaBi 6 2013/. The GaBi-database contains consistent and documented datasets which are documented in the online

GaBi-documentation /GaBi 6 2013D/.

To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

3.6 Data quality

The requirements for data quality and background data correspond to the specifications of the /IBU PCR Part A/.

PE INTERNATIONAL performed a variety of tests and checks during the entire project to ensure high quality of the completed project. This obviously includes an extensive review of project-specific LCA models as well as the background data used.

The technological background of the collected data reflects the physical reality of the declared products. The datasets are complete and conform to the system boundaries and the criteria for the exclusion of inputs and outputs.

All relevant background datasets are taken from the GaBi 6 software database. The last revision of the used background data has taken place not longer than 10 years ago.

3.7 Period under review

The period under review is 2012/13 (12 month average).

3.8 Allocation

Regarding incineration, the software model for the waste incineration plant (WIP) is adapted according to the material composition and heating value of the combusted material. Following specific life cycle inventories for the WIP are considered:

- Waste incineration of plastic
- Waste incineration of paper
- Waste incineration of electronic scraps (PWB)

Regarding the recycling material of metals, the metal parts in the EoL are declared as end-of-waste status. Thus, these materials are considered in module D. Specific information on allocation within the background data is given in the GaBi dataset documentation.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared

4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Transport to the building site (A4)

Name	Value	Unit								
Truck transport										
Litres of fuel diesel with maximum load (27 t payload)	39.4	l/100 km								
Transport distance truck	500	km								
Capacity utilization (incl. empty runs) of truck	85	%								

Installation into the building (A5)

Name	Value	Unit
Output substances following waste treatment on site Packaging (paper and plastic)	0.0022	kg

Reference service life

Name	Value	Unit		
Reference service life	15	а		

Operational energy use (B6)

Name	Value	Unit
Electricity consumption	2.617	kWh
Days per year in use	365	d
Hours per day in different modes	24	h
Power consumption on mode	1.2	W
Power consumption stand-by mode	0.01	W

End of life (C1-C4)

Name	Value	Unit
Collected separately Brass, Plastic		
Parts, Steel, Electronic, Electro	0.621	kg
mechanics		-
Recycling Brass	0.002	kg
Reuse plastic parts	0.126	kg
Recycling Steel	0.353	kg
Recycling metals from electronic	0.14	kg

were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Collected separately waste Card reader (including packaging)	0.624	kg
Recycling Brass	0.3	%
Reuse Plastic parts	20.18	%
Recycling Steel	56.77	%
Recycling/Reuse Electronic	11.5	%
Recycling/Reuse Electro mechanics	10.9	%
Reuse Paper packaging	0.35	%

5. LCA: Results

Results shown below were calculated using CML 2000 - Apr. 2013 Methodology

DESC	RIP		F THE	SYST	EN	BOL	JND	AR	((X = IN	CLUD)ED	INI	LCA;	MND	= MOE	OULE N	OT	DECLA	RED)
PROD	DUCT	STAGE	CONST ON PRO STA	OCESS			USE STAGE					END OF LIFE STAGE				L BEY S'	FITS AND OADS OND THE YSTEM INDARYS		
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	931	000	Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾	Operational energy	use	Operational water use	De-construction	Transport	Waste processing	Disposal	Reuse-	Recovery- Recycling- potential
A1	A2	A3	A4	A5	В	1	B2	B3	6 B4	B5	E	36	B7	C1	C2	C3	C4	4	D
Х	Х	Х	Х	Х	M٢		IND	MN		MND		Х	MND	MNE		Х	X		Х
RESU	LTS	OF TH	IE LCA	\ - EN'	VIR	ONM	ENT	AL	IMPACT	: One	pie	ece	of SM	ARTa	ir Wal	Reade	er		
Parame	ter	Ρ	aramete	er		ι	Jnit		A1 - A3	A4			A5	B6	c	2 0	23	C4	D
GWP			varming p			[kg C	O ₂ -Eo	۲.] ۱	1.16E+01	1.69E	-02	3.1	2E-03	1.24E+	-00 1.69	E-02 6.03	E-03	3.27E-01	-2.07E+00
ODP			on potenti heric ozo			[kg CF	C11-E	Ēq.]	2.91E-09	1.46E	-12	1.4	3E-14	8.51E-	10 1.46	E-12 4.13	E-12	9.83E-13	-1.00E-10
AP	Ac	dification	potential water	of land a	and	[kg S	60 ₂ -Eo	1 .]	6.59E-02	7.80E	-05	7.1	0E-07	5.86E·	03 7.80	E-05 2.84	E-05	8.67E-05	-2.02E-02
EP			nication p			[kg (P0	O₄) ³⁻ - E	Eq.]	5.27E-03	1.61E	-05	1.2	4E-07	3.30E-	04 1.61	E-05 1.60	E-06	7.60E-06	-1.21E-03
POCP		ormation po ozone pho				[kg Et	hen E	q.]	4.54E-03	-2.13E	-05	5.0	4E-08	3.48E·	04 -2.13	E-051.69	E-06	4.40E-06	-1.17E-03
ADPE	Δh	iotic deple	etion pote	ential for i		[kg \$	Sb Eq	.]	9.19E-04	8.60E	-10	5.6	2E-11	1.72E-	07 8.60	E-10 8.35	E-10	2.48E-08	-1.28E-03
ADPF	Abi	otic deple	sil resourd tion poter resources	ntial for fo	ossil	[MJ]	-	1.44E+02	2.35E	-01	8.7	3E-04	1.41E+	-01 2.35	E-01 6.85	E-02	1.44E-01	-2.16E+01
RESU	LTS	OF TH	IE LCA	- RE	SOL	JRCE	US	E: C)ne piec	e of S	SMA	RTa	air Wa	all Re	ader				
Parame	ter	P	aramete	er		Unit	A1	- A3	A4	A4 A5 B		B	6 C2		СЗ		C4	D	
PERE	R	enewable en	e primary ergy carr		as	[MJ]	1.25	E+01	-		-	-			-			-	-
PERM		Renewab sources a	le prima	ry energ		[MJ]	0.00	E+00	-			-		-	-		-	-	
PERT	To	tal use o		ble prim		[MJ]	1.25	E+01	1.49E-	02 E	2 8.14E-05 4.04		4.04E	4.04E+00 1.49E-02		1.96E-02	2 1.	12E-02	-7.96E-01
PENRE	= ^{NO}	on renewa	able prim nergy ca	nary ene	rgy	[MJ]	1.69	E+02	-						-		-	-	
PENR	и No	on renewa	able prim	nary ene	rgy	[MJ]	0.00	E+00	-								-	-	
PENR	г	Total use		enewabl	-	[MJ]	1.69	E+02	2.49E-	01 1	.02E	E-03	2.21E	+01 2	49E-01	1.07E-0 ⁷	1 1.	61E-01	-2.25E+01
SM	_	primary e				[kg]		E-01	0.00E+			+00			00E+00	0.00E+0		00E+00	0.00E+00
RSF	l	lse of ren	newable s fuels	seconda	ry	[MJ]		E+00			.00E	+00	0.00E	+00 0.	00E+00	0.00E+0	0 0.	00E+00	0.00E+00
NRSF	Use	e of non r		e secon	dary	[MJ]	0.00	E+00	0.00E+	00 0	.00E	+00	0.00E	+00 0.	00E+00	0.00E+0	0 0.	00E+00	0.00E+00
FW		Use of	net fresh	n water		[m³]	6.05	E-02	2.21E-	05 9).07E	-06	9.98E	-03 2	21E-05	4.84E-0	5 8.	32E-04	-1.25E-02
RESU Reade		OF TH	IE LCA	A – OU	TP	UT FI	_ON	IS A	ND WA	STE C	:AT	EGC	DRIES	6: On	e piece	of SM	ART	air Wa	11
Parame			Paramet	er		Unit	A1	- A3	4	4		A5		B6	C2	СЗ		C4	D
HWD)	Hazardo	us waste	dispose	ed	[kg]	1.04	4E-02	2 5.47	E-06	7	.04E-	08 3.0	06E-03	5.47E-0	6 1.49E-	05 1	.25E-05	-8.65E-05
NHW	D N	on hazar	dous was	ste dispo	osed	[kg]	1.72	2E-01	3.84	E-05	7	.83E-	05 7.1	4E-03	3.84E-0	5 3.47E-	05 3	8.71E-02	-2.74E-02
RWD		Radioact		•		[kg]	-	6E-03		E-06									-3.71E-04
CRU			onents fo			[kg]	-)E+00		E+00						0 0.00E+			-
MFR MER			ials for re		on/	[kg]	-)E+00)E+00		E+00 E+00						00 3.56E- 00 0.00E+			-
EEE		Materials Exporte	d electric			[kg] [MJ]	-)E+00		E+00 E+00						0 0.00E			-
EET			ed therma			[MJ])E+00	-	E+00						0 0.00E+			-

6. LCA: Interpretation

This chapter contains an interpretation of the Life Cycle Impact Assessment categories. Stated percentages in the whole interpretation are related to the overall life cycle, excluding credits (module D).

The production phase (modules A1-A3) contributes between 77% and 100% to the overall results for all the environmental impact assessment categories hereby considered, except for the depletion potential of the stratospheric ozone layer (ODP), for which the contribution from the production phase accounts for app.77%. Steel, plastics and electronic parts account in total with app. 87% to the overall mass of the product, therefore, the impacts are in line with the mass composition of the product. The environmental impacts for the transport (A2) have a negligible impact within this stage. To reflect the use phase (module B6), the energy consumption was included and it has a major contribution for all the impact assessment categories considered - between 0.1% and 9%, with the exception of ODP (23%). In calculating the ozone depletion potential, the anthropogenically released halogenated hydrocarbons, which can destroy many ozone molecules, are recorded first, therefore, as expected, the impact is higher during the use phase of the product (B6). This is a result of long operation hours in on mode every day in a year.

In the end-of-life phase, there are loads and benefits (module D, negative values) considered. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process (energy substitution).

7. Requisite evidence

Not applicable in this EPD.

8. References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013-04 www.bau-umwelt.de

PCR Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013 www.bau-umwelt.de

IBU PCR Part B

IBU PCR Part B: PCR Guidance-Texts for Building-Related Products and Services. From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU). Part B: Requirements on the EPD for Electronic Access Control Systems. www.bau-umwelt.com

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

ISO 14001:1999

Environmental Management System Certificate

ISO 9001:1994

Quality systems – Model for quality assurance in design, development, production, installation and servicing

EN 15804

EN 15804:2012+A1:2014: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

GaBi 6 2013

GaBi 6 2013: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, PE INTERNATIONAL AG, Leinfelden-Echterdingen, 1992-2013

GaBi 6 2013D

GaBi 6 2013D: Documentation of GaBi 6: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, PE INTERNATIONAL AG, Leinfelden-Echterdingen, 1992-2013. http://documentation.gabi-software.com/

ISO 14001:2004

Environmental management systems - Requirements with guidance for use (ISO 14001:2004 + Cor. 1:2009)

EWC

European Waste Catalog

WEEE

Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE)

9. Annex

Results shown below were calculated using TRACI Methodology.

									X = IN				LC/	A; MN	ID =	MOD		от	DECLA	RED)
	DUCT STAGE CONSTRUCTI ON PROCESS STAGE				USE STAGE									END OF LIFE STAGE				BENE L BEY S	EFITS AND OADS OND THE YSTEM INDARYS	
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	- Ise		Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾		Operational energy use	Operational water	USe De-construction	demolition	Transport	Waste processing	Disposal	Reuse-	Recovery- Recycling- potential
A1	A2	A3	A4	A5	B	1	B2	B3	B4	B5		B6	В	7	C1	C2	C3	C,	4	D
Х	Х	Х	Х	Х	MN	ID N	1ND	MN	D MND	MN	D	Х	MN	ID N	IND	Х	Х	Х	:	Х
RESU	LTS	OF TH	IE LCA	- EN	VIR	ONM	ENT	AL I	MPACT	: On	e pi	iece	of S	SMAR	Tai	r Wall	Reade	r		
Paramet	arameter Parameter				Unit			A1 - A3	A 4	Ļ	A5 E		B6	36 C2		СЗ		C4	D	
GWP			warming p			[kg C	0 ₂ -Ес	q.] 1	I.16E+01	1.69E	-02	3.12E	-03 ′	1.24E+	00	1.69E-02	6.03E	-03	3.27E-01	-2.07E+00
ODP		Depletion potentia stratospheric ozor					[kg CFC11-Eq.		3.12E-09 1.55		-12	1.52E-14 9.05		9.05E-	E-10 1.55E-12		2 4.39E-12		1.04E-12	-1.48E-10
AP	A	cidification	potential			[kg S	SO ₂ -Eo	q.] (6.61E-02	9.83E	-05	8.61E	-07	5.55E-	03 9	9.83E-05	2.69E	-05	1.02E-04	-1.94E-02
EP		Eutroph	water hication p	otential		[kg	N-eq.]	4	4.30E-03	6.71E	-06	4.96E	-08	2.36E-	04 (6.71E-06	1.15E	-06	3.56E-06	-5.48E-04
Smog		Ground-le	evel smog	formatic	n	[ka	O ₃ -eq	.1 8	8.77E-01	1.91E	-03	2.01E	-05	5.02E-	02	1.91E-03	2.44E	-04	1.00E-03	-2.23E-01
Resourc	es	Resource	potential s – resou	rces fos	sil		MJ]	-	.23E+01							3.22E-02				-8.86E-01
Resources Resources - resources fossil [MJ] 1.23E+01 3.22E-02 1.01E+00 3.22E-02 4.88E-03 1.48E-02 8.86E-01 RESULTS OF THE LCA - RESOURCE USE: One piece of SMARTair Wall Reader																				
Paramet			meter		Unit		A1		A4			A5		B6		C2	СЗ		C4	D
PERE		Renewab ergy as e	nergy ca	rrier	[MJ]		1.25E	+01	-			-		-		-	-		-	-
PERM		Renewable primary energy resources as material utilization		as n	[MJ]		0.00E+00		-		-			-		-	-		-	-
PERT	pri	Total use of renewable primary energy resources		irces	[MJ]		1.25E+01		1.49E-02		8.14E-05 4		4.0	4.04E+00 1		9E-02	1.96E-02 [·]		12E-02	-7.96E-01
PENRE	er	Non renewable primary energy as energy carrier		rrier	[MJ]	I	1.69E+02		-		-			-		-	-		-	-
PENRM		Non renewable primary energy as material utilization			[MJ]		0.00E+00		-		-		-			-	-		-	-
PENRT	ren	ewable p	se of non rimary er urces	nergy	[MJ]		1.69E	+02	2.49E-	01	1.02	2E-03	2.2	1E+01	2.4	9E-01	1.07E-01	1.	.61E-01	-2.25E+01
SM	Us	e of secor	ndary ma		[kg]		2.55E	-01	0.00E+	-00	0.00)E+00	0.0	0E+00	0.0	0E+00	0.00E+00) 0.	00E+00	0.00E+00
RSF	.	second	enewable ary fuels		[MJ]		0.00E	+00	0.00E+	-00	0.00)E+00	0.0	0E+00	0.0	0E+00	0.00E+00	0.	00E+00	0.00E+00
NRSF		Jse of nor second	ary fuels		[MJ]		0.00E	+00	0.00E+	-00	0.00)E+00	0.0	0E+00	0.0	0E+00	0.00E+00	0.	00E+00	0.00E+00
FW	ι	Jse of net	fresh wa	ter	[m³]		6.05E	-02	2.21E-	05	9.07	7E-06	9.9	8E-03	2.2	1E-05	4.84E-05	8	.32E-04	-1.25E-02
RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: One piece of SMARTair Wall Reader																				
Parame	ter	F	Paramete	er		Unit	A1	- A3		44		A5		B6		C2	C3		C4	D
HWD			us waste disposed			[kg]			5.47E-06			7.04E-08					_			-8.65E-05
				dous waste disposed			[kg] 1.72E-01							7.14E-03						
			tive waste disposed			[kg]										1.55E-05			-3.71E-04	
CRU MFR	· · ·		onents for re-use			[kg] [kg]	_	0.00E+00 0.00E+00		0.00E+00 0.00E+00				0.00E+00			_		0.00E+00	-
MER			for energy recovery			[kg]	-	E+00		E+00				3 0.00E+00 0 0.00E+00			-			-
EEE				d electrical energy			_	E+00		E+00			94E-03 0.00				0.00E+		5.01E-01	-
EET			ed thermal energy			[MJ] [MJ]	_	E+00	_	0E+00 0E+00					+00 0.00E+00		_			-
	1	1		- 3														<u> </u>		

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@bau-umwelt.com www.bau-umwelt.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@bau-umwelt.com www.bau-umwelt.com
PE INTERNATIONAL SUSTAINABILITY PERFORMANCE	Author of the Life Cycle Assessment PE INTERNATIONAL AG Hauptstraße 111 70771 Leinfelden-Echterdingen Germany	Tel Fax Mail Web	+49 711 34 18 17 22 +49 711 34 18 17 25 consulting@pe-international.com www.pe-international.com
ASSA ABLOY	Owner of the Declaration TESA ASSA ABLOY B ^o Ventas, 35 20305 Irun, Gipuzkoa SPAIN	Tel Web	+34 943 669 100 www.tesa.es